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Magnetic Waves Guided by a Linearly
Tapered YIG Film

S. R. SESHADRI, SENIOR MEMBER, IEEE, AND MING-CHI TSAI, STUDENT MEMBER, 1EEE

Abstract—A quasi-optical treatment is given for the dispersion relation
and the group delay time of a magnetic wave guided by a YIG film having
a weak linear taper in its thickness in the propagation direction of the
guided magnetic wave. This treatment has 1) confirmed the intuitive
results in which the local value of the thickness is used for the tapered
film, 2) indicated the frequency regions of validity of the intuitive results,
and 3) revealed interesting features of the wavenormal and ray directions
inside a YIG film,

I. INTRODUCTION

LANAR LAYERS of yttrium iron garnet (YIG) are

employed in delay lines using guided magnetic waves
for microwave frequencies [1], [2]. It is usual to resort to
the wave theory for obtaining the dispersion relation and
the group delay time. However, quasi-optic considerations
can also be used for determining the dispersion relation
[3] and the group delay time [4], [S]. Recently [6] we have
given such a quasi-optic treatment of the dispersion rela-
tion and the group delay time of the magnetic waves
guided by a planar film of YIG for the case in which the
film is magnetized normal to the surfaces or parallel to the
surfaces and to the direction of propagation of the guided
wave. Since the quasi-optic procedure employs local rela-
tions, such a technique can be used for the treatment of
film geometries not readily amenable to a wave-theoretical
treatment. In this paper, we give a treatment of the
dispersion relation and the group delay time of the mag-
netic waves guided by a YIG film having a weak linear
taper in its thickness in the propagation direction of the
guided magnetic wave. We have considered the magneti-
zation direction normal to the midplane of the film and
parallel to the midplane of the film and to the propagation
direction of the guided magnetic wave. Our treatment has
confirmed the intuitive results in which the thickness of a
planar film is replaced by the local value of the thickness
for a tapered film. In addition our treatment has shown
the frequency regions of validity of the intuitive results
and has revealed interesting features of the wavenormal
and ray directions inside a YIG film.

II. NORMAL MAGNETIZATION

A nearly planar slab of YIG (popt,, €,€,) situated in free
space (g, €9) has a weak linear taper in the x-direction of
its thickness. A Cartesian coordinate system is chosen
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Geometry of the tapered YIG film in air for the normal

Fig. 1.
’ magnetization. d(x)=d—xtana.

such that the plane z=0 coincides with the midplane of
the film as shown in Fig. 1. The geometry of the film has
no variation in the y-direction. The film occupies the
region —oo<x, y<oo and —d(x)<z<d(x) where d(x)
=d—xtana and « is the angle of the taper. The average
thickness of the film is 24 which is the same as the actual
thickness at x=0. The film is uniformly magnetized in the
z-direction which is nearly normal to the surfaces of the
film. All the field quantities are assumed to be indepen-
dent of y and have the harmonic time dependence of the
form exp(—iwt). For the magnetic waves, inside the film,
the magnetic scalar potential satisfies the differential
equation
92 92
(2 + Z Jutx -0, (n
The magnetic field H(x, z) and the magnetic flux density
B(x, z) are related to Y(x, z) as follows:

H(x,2) = 5= ¥(x,2) (22)
H/(x,z)=0 (2b)
H,(%,2)= - 4(%, 2) (20)
BL(%, ) =ap 52 9%, 2) (3a)
B,(x,2)= = iohpo b5, 2) (3b)
B(%, ) =ra g ¥(x, 2. (30

We need only the component u; of p, and it is given by
lh=["-’2_‘*’H(w11+‘*’M)]/(‘*’2_“’31) 4)

where wy is the gyromagnetic angular frequency and w,,
is the angular frequency corresponding to the saturation
magnetization. The fields in free space are also governed
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by (1), (2), and (3) with g, =1 and g, =0.

For an unbounded YIG, assuming a solution of the
form Y(x, z)~exp(if-r) with B=2x8, +2B,, we obtain the
dispersion relation as B, =(—u,)'/?8, which together with
(4) shows that a homogeneous plane wave corresponding
to real B, and B, is possible only for p, <0 or equivalently
for wy <w<[wy(wy +wy)]"/2 We assume that o is re-
stricted to this range leading to the possibility of homoge-
neous plane waves in the YIG. From the dispersion rela-
tion B8, =(—p,)"/?B, in an unbounded YIG, we can show
that the group velocity v, is perpendicular to the wave
vector B, that is, o - B=0.

A plane magnetic wave is incident on the upper inter-
face z=d(x) between the YIG and the free space from
the side of the YIG as shown in Fig. 1. There is a reflected
magnetic wave in the YIG and a transmitted magnetic
field in the free space. This reflection phenomenon can be
treated conveniently in a rotated coordinate system
(u, y,w) as defined by

(5a)
(5b)

where the u-axis is parallel to the upper surface of the
film. In the rotated coordinate system, (1) becomes
62

oudw

u=xcosa—{(z—d)sina

w=xsina+(z—d)cosa

. 02 .
(1, cos? a+sin® a)a—g —2(1—p,)sinacos a
u

2
+(pysin® a + cos? a)—a~ Y(u,w)=0.
ow?

(6)
The magnetic scalar potential in the YIG is of the form
W, w)=[ 4, exp(iB,w) +A,exp (iB,w) | exp (iB,u)
Q)
where 8, is assumed to be positive and B,; and B, can
be obtained in terms of B, from (6) as follows:

g L) 40 -p)sinacosa] |

[ ysin® a+cos?a

(8a)

B, = [ _(_“1)1/2_*_(1 —Ml)sinacosa]
w2

B.. (8b)

[ 1ysin® a+cos? a |

From (6) with p, =1, we find the magnetic scalar potential
in the free space to be of the form

Y(u,w)=Azexp(—B,w)exp(if,u). ®)
The tangential magnetic field H, (u,w) and the normal
magnetic flux density B, (u,w) can be found from (2), (3),

and (5). Applying the boundary conditions that H, (u,w)
and B, (u,w) are continuous at the interface w=0 yields

1/R=4, /4, =exp(i2¢) (10)
where
¢=tan~'[(—p,)""?] +m/2. (11)

A, /A, is designated as the phase reflection coefficient. It
is important to note that the phase reflection coefficient,
being independent of a, is the same for all angles of taper
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of the film. Also, since ¢ is not a function of §,, 8,,, and
B, it follows that the phase reflection coefficient is
independent of the angles of incidence and reflection of
the magnetic wave in the YIG film.

The plane waves having the wavenumbers B8, and B,
in the w-direction are designated as modes 1 and 2,
respectively, in an unbounded YIG. In the w-direction, it
can be shown from (8) that the group velocity of the mode
1 is negative and that of the mode 2 is positive, i.e.,

U1 <0 1,,,>0.

(12)

Therefore, the mode 2 represents a wave whose energy
travels towards the interface or whose associated ray is
directed towards the interface. Hence, the mode 2 repre-
sents the incident ray. Similarly, the mode 1 represents the
reflected ray since the energy associated with this wave
travels away from the interface. Consequently, the ray
reflection coefficient R=A, /A4, =exp(—i2¢) as indicated
in (10).

Let 8, be the angle made by the wavenormal of the
mode 1 with the w-axis and 8, be the angle made by the
negative of the wavenormal of the mode 2 with the w-axis,
as shown in Fig. 1. Also, let #, and 6, be the angles with
respect to the z-axis corresponding to #, and 8,, respec-
tively, as also indicated in Fig. 1. Therefore

tand, =B, /B, (13a)
tanf, = — B, /B> (13b)
0,=6,+a (14a)
0,=0, —a. (14b)

Using (8), (13), and (14) we find the important result that
6,=0,=tan™'[(—p,) 2. (15)

The wavenormal of the mode 1 and the negative of the
wavenormal of the mode 2 make equal angles with the
direction (z) of magnetization.
The reflection of magnetic waves at the lower interface
= —d(x) separating the YIG(z> —d(x)) from the free
space (z< —d(x)) can also be treated in a similar manner
for the wave incident from the side of the YIG. As before,
we use a rotated coordinate system (, y, w) such that the
u-axis is parallel to the lower interface of the film. There-
fore, u and w are defined as in (5a), (5b) with « and d
replaced by —a and —d, respectively. Consequently, for
both the interfaces, we obtain the same value for the
phase as well as the ray reflection coefficients. Also, at the
lower interface, the wavenormals of the modes 1 and 2
make equal angles with the direction (z) of magnetization.
Since the film is homogeneous, the wavenormal direc-
tions inside the film are straight lines. In view of (15) the
wavenormal directions of the mode 1 successively and
totally internally reflected from the opposite surfaces of
the film are parallel even though the two reflecting inter-
faces are not parallel. A similar result holds good for the
mode 2 also. Since the rays are normal to the correspond-
ing wavenormals, the zig-zagging ray directions obtained
from successive reflections at the two interfaces are such’
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Fig. 2. Zig-zag model for the wavenormal directions and the associated
zig-zagging ray directions for the normal magnetization. §=7z/2—9.

that all the rays directed towards or away from a particu-
lar interface are parallel. Thus, the directions of the zig-
zagging wavenormals and the rays inside a YIG film with
parallel interfaces remain unchanged when the two inter-
faces are slanted with respect to the midplane of the film
5o as to obtain a linear taper in the thickness.

The ray of the magnetic wave on reflection at a plane
interface between the YIG and the free space undergoes,
in general, a lateral displacement [7]-[9] in the x-direction
as given by 2x, =293¢ /38, and an associated time delay
[4] as given by 2¢, = —23¢/0dw. In general, the phase term
¢ is a function of the independent variables w and B,. As
pointed out previously [6], since ¢ is independent of S,,
the ray of the magnetic wave does not undergo a Goos—
Hinchen lateral displacement. However, there is a non-
vanishing group delay on reflection at a plane interface
between the YIG and the free space.

The dispersion relation of the magnetic wave guided
along the YIG film can be deduced using the zig-zag
model for the propagation of the phase fronts of a homo-
geneous plane wave inside the film [3]. The zig-zagging
wavenormal directions of the successively reflected homo-
geneous plane wave inside the film are shown by the solid
line P, P, P, P, in Fig. 2. The angle made by the wavenor-
mals of the modes 1 and 2 with the direction (z) of
magnetization is denoted by 6#. The dashed line P, P,
represents a phase front, namely, that is perpendicular to
the wavenormal of the mode 2. We assume that the
thickness of the film varies sufficiently slowly in the
x-direction that in the distance between P, and P,, the
film thickness is essentially a constant. Therefore, in ob-
taining the closure condition on the phase between P, and
P,, we can assume the two interfaces of the film to be
locally parallel. Since the closure condition is a local
relation, it can be deduced for a tapered film essentially in
the same manner as for a planar film with parallel inter-
faces [6]. The result is

4(—p,)?d(x)B, +46=2m(n+1), n=1,2,3,--,etc.

(16)
where the right-hand side is chosen such that n=1 corre-
sponds to the smallest possible positive value for 8,. The
closure condition (16) is the dispersion relation of the
guided magnetic wave. The group velocity V,, of the
guided magnetic wave can be determined from (16) as

Ve =(—11)2d(x)[ (=) /2d(x) /0, — 90 /80| "
a7

where v,, is the x-component of the group velocity in the
unbounded YIG.

The distance between P; and P, is approximately equal
to 4dtanf=4d(—p,)” /2. The fractional change in the
thickness of the YIG film from P, to P, is obtained as
4(—p,;)~*tana. This fractional change in the film thick-
ness has to be very small compared to unity in order for
us to be able to treat the closure condition as a local
relation. Consequently, (16) and (17) are valid except near
p,; =0, that is except for frequencies very close to the
resonant frequency w=[wy(wy +w,, )2

Since v, - B=0, the rays inside the film are perpendicular
to the corresponding wavenormal directions. Therefore,
there are zig-zagging ray directions inside the film associ-
ated with the zig-zagging wavenormal directions. It has
been pointed out previously that, on reflection at an
interface between the YIG and the free space, a ray does
not undergo a lateral shift. In Fig. 2 R,R,R;R is a part
of the zig-zagging ray directions. These ray directions
correspond to P, P, P, P, which is a part of the zig-zagging
wavenormal directions. The angle made by the ray direc-
tions associated with the modes 1 and 2 with the direction
(z) of magnetization is denoted by 6 where 6= 7/2—8.
R,R, is on the midplane z=0 of the YIG film. We
assume that the thickness of the film varies sufficiently
slowly in the x-direction that in the distance between R,
and R,, the film thickness is essentially a constant. There-
fore, in obtaining the group velocity by the ray method,
we can assume that the two interfaces of the film are
locally parallel. Since the ray method involves only local
relations, the group velocity for a tapered film by the ray
method can be deduced with the help of a procedure
similar to that employed for a planar film with parallel
interfaces. The result is the same as that given by (17).
Hence, there is internal consistency since the ray method
gives the same result for the group velocity of the guided
magnetic wave on a tapered film as that obtained by the
wave method and the dispersion relation. _

The distance between R, and R, is equal to 4dtanf=
4d(—p,)"/?. The fractional change in the thickness of the
YIG film from R, to R, is obtained as 4(—p,)/*tana.
This fractional change in the film thickness has to be very
small compared to unity in order to validate the local
relations used in the ray method of obtaining the group
velocity. Consequently, for a weakly tapered film, the ray
method of determining the group velocity is valid except
for frequencies very close to the cutoff frequency w=wg
where p, tends to infinity. It should be noted that near the
cutoff frequency even the validity of the magnetic wave
approximation used in the present analysis breaks down.
Thus, the quasi-optic method of deducing the dispersion
relation and the group velocity of the magnetic wave
guided by a weakly tapered YIG film is valid except in the
neighborhood of the cutoff and resonant frequencies. We
shall now proceed to give a brief treatment for the magne-
tization parallel to the propagation direction of the guided
magnetic wave and nearly parallel to the surfaces of the
film.
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Fig. 3. Geometry of the tapered YIG film in air for the parallel
magnetization. d(z)=d—ztana.

III. PARALLEL MAGNETIZATION

It is convenient to keep the magnetization in the z-
direction. For the nearly planar slab of YIG situated in
free space, the weak linear taper in the thickness now
occurs in the z-direction. We now choose a Cartesian
coordinate system such that the plane x=0 coincides with
the midplane of the film as shown in Fig. 3. The geometry
of the film has no variation in the y-direction. The YIG
film now occupies the region —d(z)<x<d(z) and —o0
<y,z< oo where d(z)=d—ztana. The film is uniformly
magnetized in the z-direction which is nearly parallel to
the surfaces of the film. As before, all the field quantities
are assumed to be independent of y. For the magnetic
waves, the governing equations (1)-(3) and the plane
wave characteristics as given in Section II are unaltered.

A plane magnetic wave is incident on the upper inter-
face x=d(z) between the YIG and the free space from
the side of the YIG as shown in Fig. 3. There is a reflected
magnetic wave in the YIG and a transmitted magnetic
field in the free space. To analyze this reflection phenom-
enon, we use a rotated coordinate system (u, y,w) as
defined by

(18a)
. (18b)
where the w-axis is parallel to the upper surface of the
film. In the new coordinate system, (1) becomes

32 . 2
+2(1—p,)sinacosa 3w

u=(x—d)cosa+zsina

w= —(x—d)sina+zcosa

2 gt sin? o) 2
(p,cos® a+sin’ a) o

(19)

2
+(p,sin’ @+ cos? a)—a— Y(u,w)=0.
ow?

We take the magnetic scalar potential in the YIG to be of
the form ‘

Y(u,w)=[ 4,exp(iB, u) + A4, exp (if,,u) ] exp (iB,w)
(20)

where B, is assumed to be positive, and 8,, and 8,, can be
expressed in terms of 8, with the help of (19) as follows:

[—(_ﬂl)l/z—(l—ul)cosasina]

Bul= 2 . o Bw \(21&)
[ 1 c082 o+ sin a]
[(—y,l)l/z—(l—,ul)cosasina]
2= . (Ib
A [1icos?a+sin’a k (210)
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Using (19) with p, =1, we express the transmitted mag-
netic scalar potential in the free space as

Y(u,w)=Asexp(—B,u)exp(iB,w). (22)
The tangential magnetic field H, (u,w) and the normal
magnetic flux density B,(u,w) can be determined from
(2), (3), and (18). Applying the boundary conditions that
H (u,w) and B,(u,w) are continuous at the interface u=0
yields

R=4, /A =exp(~i2¢) 23)

‘where ¢ is the same as that given in (11). The phase

reflection coefficient 4, /A4, has the same important fea-
tures as those for the normal magnetization.

The plane waves having the wavenumbers B,; and 8,,
in the u-direction are designated as modes 1 and 2, respec-
tively, in an unbounded YIG. In the u-direction, it can be
shown from (21) that the group velocity of the mode 1 is
positive and that of the mode 2 is negative, i.e.,

01 >0 0,,,<0. (24)

Hence, the modes 1 and 2 represent the incident and
reflected rays, respectively. Consequently, the phase re-
flection coefficient 4, /4, and the ray reflection coeffi-
cient R are the same as indicated in (23).

Let 8, be the angle made by the wavenormal of the
mode 1 with the u-axis and 52 be the angle made by the
negative of the wavenormal of the mode 2 with the u-axis,
as shown in Fig. 3. Also, #, and 8, be the angles with
respect to the x-axis corresponding to 8, and 8,, respec-
tively, as also indicated in Fig. 3. Hence,

tand, =8, /B, (25a)
tand,=—pB, /B, (25b)
0,=8, +a (26a)
0, =0, —a. (26b)

Using (21), (25), and (26) we obtain the important result
that

0, =6, =tan™! [ (—p,)"/*]. (27)

The wavenormal of the mode 1 and the negative of the
wavenormal of the mode 2 make equal angles with the
x-direction, which is perpendicular to the magnetization
direction.

The reflection of magnetic waves at the lower interface
x= —d(z) separating the YIG (x> —d(z)) from the free
space (x< —d(z)) can also be investigated in a similar
manner for the wave incident from the side of the YIG.
For both the interfaces, we obtain the same value for the
phase as well as the ray reflection coefficients. At the
lower interface also, the wavenormal directions of the
modes 1 and 2 make equal angles with the x-direction,
which is normal to the magnetization direction.

As with the normal magnetization, for the parallel mag-
netization also, the wavenormal directions of the mode 1
as well as those of the mode 2 successively and totally
internally reflected from the opposite surfaces of the film
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Fig. 4. Zig-zag model for the wavenormal directions and the associated
zig-zagging ray directions for the parallel magnetization. §==/2—6.

are parallel even though the two reflecting interfaces are
not parallel. Similar results are obtained for the zig-zagging
ray directions associated with the modes 1 and 2. It
follows therefore that even for the parallel magnetization,
the directions of the zig-zagging wavenormals and the rays
inside a YIG film with parallel interfaces remain un-
changed when the two interfaces are slanted with respect
to the midplane of the film so as to obtain a linear taper
in the thickness. Also, for the parallel magnetization, the
ray reflection coefficient is the same as that for the normal
magnetization; hence, the ray on reflection at a plane
interface between the YIG and the free space, undergoes
no lateral displacement but has a time delay identical to
that given for the normal magnetization, that is 2¢, =
—293¢/9w.

The zig-zagging wavenormal directions of the succes-
sively reflected homogeneous plane wave inside the film
are shown by the solid line P, P, P, P, in Fig. 4. The angle
made by the wavenormals of the modes 1 and 2 with the
x-direction is denoted by 8. The dashed line P, P, repre-
sents a phase front, namely, that is perpendicular to the
wavenormal of the mode 1. The film thickness is assumed
to vary sufficiently slowly in the z-direction that in the
distance between P, and P,, the film thickness is essen-
tially a constant. Therefore, for determining the closure
condition on the phase between P, and P,, the two inter-
faces may be considered to be locally parallel. Hence, the
closure condition for a tapered film can be deduced
essentially in the same manner as for a planar film with
parallel interfaces [6]. The resuit is

4(—p,) " 2d(2)B, —4¢=2m(n-2),
n=1,2,3,---,etc.

(28)
where the right-hand side is chosen such that n=1 corre-
sponds to the smallest possible positive value for 8,. The
closure condition (28) is the dispersion relation of the
guided magnetic wave. The group velocity V,, of the
guided magnetic wave can be derived from (28) as

~ Vo= (=) " 2d() ][ (=) 2d(2)/
(—0,)—06/30] " (29)

where v,, is the z-component of the group velocity in the
unbounded YIG. )

The distance between P, and P, is approximately equal
to 4dtan@=4d(—p,)"/%. The fractional change in the
thickness of the YIG film from P, to P, is obtained as
4(—p)/?*tana. This fractional change has to be very

small compared to unity to justify the treatment of the
closure condition as a local relation. Therefore, (28) and
(29) are valid except when pu, becomes very large, that is,
except for frequencies very close to the resonant frequency
W= Wy.

The rays are perpendicular to the corresponding wave-
normals and do not undergo lateral shifts on reflection.
There are zig-zagging rays associated with the zig-zagging
wavenormals. In Fig. 4 R,R,R;R, is a part of the zig-
zagging ray directions. These ray directions correspond to
P, P, P, P, which is a part of the zig-zagging wavenormal
directions. The angle made by the ray directions associ-
ated with the modes 1 and 2 with the x-direction is
denoted by 8 where §==/2—80. R,R, is on the midplane
x=0 of the YIG film. We assume that the slow variation
of the film thickness in the z-direction is such that in the
distance between R; and R, the film thickness is essen-
tially a constant. Therefore, for deducing the group veloc-
ity by the ray method, the two interfaces of the film may
be approximated to be locally parallel. Hence, the group
velocity for a tapered film by the ray method can be
derived with the help of a procedure similar to that
employed for a planar film with parallel interfaces. The
result is the same as that given by (29). As with the
normal magnetization, for the parallel magnetization also,
there is internal consistency since the ray method gives the
same result for the group velocity of the guided magnetic
wave on a tapered film as that determined by the wave
method and the dispersion relation.

The distance between R, and R, is equal to 4dtanf=
4d(—p,)" /2 The fractional change in the thickness of
the film from R, to R, is 4d(—p,)”/*tana. This frac-
tional change has to be very small compared to unity in
order to validate the ray method of determining the group
velocity. Hence, for a weakly tapered film, the ray method
of finding the group velocity is valid except for frequen-
cies very close to the cutoff frequency w=[wy(wy+
wys)]'/? where p, =0. Near the cutoff frequency, the mag-
netic wave approximation used in the present analysis also
breaks down. Thus, as with the normal magnetization, for
the parallel magnetization also, the quasi-optic method of
deducing the dispersion relation and the group velocity of
the magnetic wave guided by a weakly tapered YIG film
is valid except in the neighborhood of the cutoff and
resonant frequencies.

IV. CoNcLUDING REMARKS

There are two magnetic wave modes in an unbounded
YIG with a uniform magnetization. The wavenormals of
these two modes make equal angles with either the direc-
tion of magnetization or the direction which is perpendic-
ular to the magnetization direction. In addition to the
saturation magnetization and the applied magnetic flux,
the angle of inclination depends only on the wave
frequency. In a bounded YIG such as in a thin film,
where the homogeneous plane wave modes are multiply
and totally internally reflected from the two interfaces of
the film, there are an infinite number of guided mdes
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having different wavenumbers. For all these guided modes,
the aforementioned inclination angle remains the same.
This feature of the wavenormals of the homogeneous
plane wave modes is unaffected by the geometry of the
film. In particular, the angle of inclination is the same for
a film with parallel interfaces having a constant separa-
tion distance between them and for a film with nonparal-
Iel interfaces having a separation distance which varies in
the propagation direction. The rays are perpendicular to
the corresponding wavenormals. The rays associated with
the plane wave modes also make equal angles with either
the direction of magnetization or the direction which is
perpendicular to the magnetization direction. As in the
case of the wavenormals, for the rays also, the angle of
inclination depends only on the wave frequency and does
not depend on the order of the guided mode or the
geometry of the film.

Inside a film there are zig-zagging wavenormal direc-
tions caused by the successive and total internal reflection
of the plane wave modes at the two interfaces. The
wavenormals of each of the two plane wave modes are
always parallel. This parallelism is obtained even if the
two interfaces are slanted significantly. For the applica-
tion of the closure condition on the phase, we require the
fractional change in the thickness of the film in one unit
of the zig-zagging wavenormal directions to be very small
compared to unity. Such a small fractional change in the
thickness is possible only for weakly slanted interfaces
and that too for frequencies not close to the guided wave
resonant frequency. The application of the closure condi-
tion yields the dispersion relation of the guided-wave
modes. Similarly, associated with the zig-zagging wavenor-
mals, there are zig-zagging rays. The rays of each of the

two plane wave modes are always parallel. Although this .

parallelism is obtained even if the two interfaces are
slanted significantly, in order to justify the local relations
used in the derivation of the group velocity by the ray
method, we require the fractional change in the thickness
of the film in one unit of the zig-zagging ray directions to
be very small compared to unity. This small fractional
change in the film thickness can be obtained only if the
two interfaces are slanted slightly and that too for fre-
quencies not close to the guided-wave cutoff frequency.
The ray method of determining the group velocity yields a
result identical to that obtained from the dispersion rela-
tion.

In this paper we have given the details for the various
results for the magnetization direction 1) normal to the
midplane of the film, and 2) parallel to the propagation
direction of the guided magnetic wave and the midplane
of the film. However, one of us has obtained similar
results for a more general case in which the magnetization
direction lies in a plane normal to the midplane of the
film but containing the propagation direction.

For a slightly tapered film, intuitive considerations lead
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us to replace the actual thickness in the dispersion relation
and the group velocity of the magnetic wave guided by a
planar film with parallel interfaces by the local value of
the thickness for a slightly tapered film with nonparallel
interfaces. Our quasi-optic treatment of the magnetic
waves guided by a weakly tapered YIG film has con-
firmed the intuitive results and has also clarified the
frequency ranges of validity of the intuitive results. In
addition, our treatment has revealed the interesting fea-
tures of the wavenormal and the ray directions inside a
YIG film with a uniform magnetization.

Our treatment is valid for any kind of taper of the film
so long as the taper is sufficiently weak. When an uniform
external magnetic flux is applied, the applied magnetic
flux inside the YIG film is not necessarily uniform. There-
fore, it is necessary to assess also the effect of the weak
inhomogeneity in the applied magnetic flux inside the

" YIG film. Since the ray directions of the two plane wave

modes depend on the direction of the applied magnetic
flux inside the film, it is considerably more difficult to
include the effect of the weak inhomogeneity in the ap-
plied magnetic flux inside the film.

For a planar film of length L, thickness 2d, and parallel
(p) interfaces, let the group delay time of the guided
magnetic wave be denoted by 7. Similarly, let 7, be the
corresponding group delay time for a linearly tapered (¢)
film of the same length L, the same average thickness 2d
and nonparallel interfaces. From the results obtained in
this investigation, we find that T,/T, =1+ L*tan’ a /124
where a is the small tapering angle. Thus, a weak linear
taper in the film thickness tends to increase the group
delay time and this increment factor is the same for all the
frequencies and for all orders of the guided modes.
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