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Magnetic Waves Guided by a Linearly
Tapered YIG Film

s.R. SESHADRI, SEN1ORMEMBER IEEE, AND MING-CHI TSAI, .STUDEN’rMEbfEER, IEEE

Absrruct-A quasi-optical treatment is given for tbe dispersion relation

and the group delay time of a magnetic wave guided by a YIG fii having

a weak hear taper in ita tbicfmesa in the propagation direction of the

guided magnetic wave. This treatment has 1) eonfii the intuitive

results fn wfdch the load vafue of the thickness fs used for the tapered

f@ 2) indicated the frequency regions of validity of the intuitive remf*

and 3) revealed fntereating featurea of the wavenorrnaf and ray directiom

inside a YIG film.

I. INTRODUCHON

P LANAR LAYERS of yttrium iron garnet (YIG) are

employed in delay lines using guided magnetic waves

for microwave frequencies [1], [2]. It is usual to resort to

the wave theory for obtaining the dispersion relation and

the group delay time. However, quasi-optic considerations

can also be used for determining the dispersion relation

[3] and the group delay time [4], [5]. Recently [6] we have

given such a quasi-optic treatment of the dispersion rela-

tion and the group delay time of the magnetic waves

guided by a planar fihn of YIG for the case in which the

film is magnetized normal to the surfaces or parallel to the

surfaces and to the direction of propagation of the guided

wave. Since the quasi-optic procedure employs local rela-

tions, such a technique can be used for the treatment of

film geometries not readily amenable to a wave-theoretical

treatment. In this paper, we give a treatment of the

dispersion relation and the group delay time of the mag-

netic waves guided by a YIG film having a weak linear

taper in its thickness in the propagation direction of the

guided magnetic wave. We have considered the magneti-

zation direction normal to the midplane of the film and

parallel to the midplane of the film and to the propagation

direction of the guided magnetic wave. Our treatment has

confirmed the intuitive results in which the thickness of a

planar film is replaced by the local value of the thickness

for a tapered film. In addition our treatment has shown

the frequency regions of validity of the intuitive results

and has revealed interesting features of the wavenormal

and ray directions inside a YIG fihn.

II. NOWM MAGNETIZATION

A nearly planar slab of YIG (pOK,, 6.(,) situated in free

space (pO, CO) has a weak linear taper in the x-direction of

its thickness. A Cartesian coordinate system is chosen
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Fig. 1. Geometxy of the tapered YIG film in air for the normaf
magnetization. d(x) = d– x tan a.

such that the plane z = O coincides with the midplane of

the film as shown in Fig. 1. The geometry of the film has

no variation in the y-direction. The film occupies the

region – co <x, y< ce and –d(x)<z<d(x) where d(x)

= d– x tana and a is the angle of the taper. The average

thickness of the film is 2d which is the same as the actual

thickness at x = O. The film is uniformly magnetized in the

z-direction which is nearly normal to the surfaces of the

film. All the field quantities are assumed to be indepen-

dent of y and have the harmonic time dependence of the

form exp ( – itit). For the magnetic waves, inside the film,

the magnetic scalar potential satisfies the differential

equation

( a2
PI

)

—+% *( X, Z)=O.

ax2
(1)

The magnetic field H(x, z) and the magnetic flux density

B(x, z) are related to +(x, z) as follows:

Hx(x, z)= ++(X, Z) (2a)

Hy(x, z)=o (2b)

H=(X, z)= ;+(X, Z)

BX(X, Z)= POP1:+(X,Z)

B,(x, z)= –@op27&+(.x3z)

(2C)

(3a)

(3b)

Bz(x, z)=po:+(x, z). (3C)

We need only the component PI of P, and it is given by

p,= [@2 -%@H+@M)]/(@2 -u&) (4)

where u~ is the gyromagnetic angular frequency and a~

is the angular frequency corresponding to the saturation

magnetization. The fields in free space are also governed

0018-9480/81 /0200-0096$00.75 @1981 IEEE



SESHADRI AND TSAI : GUIDED MAGNSTIC WAVES 97

by (l), (2), and (3) with pl = 1 and 1.L2=0.

For an unbounded YIG, assuming a solution of the

form $(x, z)-exp (ifl. r) with j3 =f& +.f~z, we obtain the

dispersion relation as ~z = ( – pl )1/2& which together with

(4) shows that a homogeneous plane wave corresponding

to real& and ~z is possible only for p, <0 or equivalently

for a~ <a< [u~(u~ + u~)] ’12. We assume that u is re-

stricted to this range leading to the possibility of homoge-

neous plane waves in the YIG. From the dispersion rela-

tion E= =( – pl)1f2DX in an unbounded YIG, we can show

that the group velocity Ug is perpendicular to the wave

vector P, that is, Ug”@= O.

A plane magnetic wave is incident on the upper inter-

face z = d(x) between the YIG and the free space from

the side of the YIG as shown in Fig. 1. There is a reflected

magnetic wave in the YIG and a transmitted magnetic

field in the free space. This reflection phenomenon can be

treated conveniently in a rotated coordinate system

(u, y, w) as defined by

u=xcosa–(z —d)sina (5a)

w=xsina+(z–d)cosa (5b)

where the u-axis is parallel to the upper surface of the

film. In the rotated coordinate system, (1) becomes

[
(p1cos2a+sin2a) &-2(1 -pl)sinacosa&

au2 auaw

+(plsin2a+cos2a)
1

~ +( U, W)=O.

(6)

The magnetic scalar potential in the YIG is of the form

+(u, w)=[A1exp(i~W1w) +A2exp(i~W2w)]exp( i~Uu)

(7)

where & is assumed to be positive and &l and &,2 can

be obtained in terms of & from (6) as follows:

~,_ [(-P~)1’2+(1-pl) sinacosa]
w

[P1sin2a+co52~] ‘u

(8a)

~ z= [-(-Pl)’’2+(l-p1 )sinacosa]
w

[~1sin2a+cos2a]
A/. (gb)

From (6) with pl = 1, we find the magnetic scalar potential

in the free space to be of the form

*(u, w)= A3exp(–~Uw)exp( i&u). (9)

The tangential magnetic field II.(u, w) and the normal

magnetic flux density BW(U, w) can be found from (2), (3),

and (5). Applying the boundary conditions that HU(U, w)

and BW(u, w) are continuous at the interface w= O yields

l/R= A2/A1 =exp(i2@) (lo)

where

@=tan-* [(–pl)lf2]+~/2. (11)

A2 /A ~ is designated as the phase reflection coefficient. It

is important to note that the phase reflection coefficient,

being independent of a, is the same for all angles of taper

of the film. Also, since @ is not a function of &, ~W1, and

/3W2, it follows that the phase reflection coefficient is

independent of the angles of incidence and reflection of

the magnetic wave in the YIG film.

The plane waves having the wavenumbers &,l and &2

in the w-direction are designated as modes 1 and 2,

respectively, in an unbounded YIG. In the w-direction, it

can be shown from (8) that the group velocity of the mode

1 is negative and that of the mode 2 is positive, i.e.,

Vgw, <0 vgw2 >0. (12)

Therefore, the mode 2 represents a wave whose energy

travels towards the interface or whose associated ray is

directed towards the interface. Hence, the mode 2 repre-

sents the incident ray. Similarly, the mode 1 represents the

reflected ray since the energy associated with this wave

travels away from the interface. Consequently, the ray
reflection coefficient R = Al /A2 = exp( – i2@) as indicated

in (lO)._

Let 191be the angle made by the wavenorrnal of the

mode 1 with the w-axis and & be the angle made by the

negative of the wavenormal of the mode 2 with the w-axis,

as shown in Fig. 1. Also, let O, and 02 be the angles with

respect to the z-axis corresponding to &l and ~2, respec-

tively, as also indicated in Fig. 1. Therefore

tan ~1 = 13U/&,l (13a)

tan & = –&/&2 (13b)

el=~l+cl (14a)

e2=&a. (14b)

Using (8), (13), and (14) we find the important result that

01=02 =tan-1[(–p,)-l’2]. (15)

The wavenormal of the mode 1 and the negative of the

wavenormal of the mode 2 make equal angles with the

direction (z) of magnetization.

The reflection of magnetic waves at the lower interface

z = – d(x) separating the YIG(z > —d(x)) from the free

space (z< – d(x)) can also be treated in a similar manner

for the wave incident from the side of the YIG. As before,

we use a rotated coordinate system (u, y, w) such that the

u-axis is parallel to the lower interface of the film. There-

fore, u and w are defined as in (5a), (5b) with a and d
replaced by – a and – d, respectively. Consequently, for

both the interfaces, we obtain the same value for the

phase as well as the ray reflection coefficients. Also, at the

lower interface, the wavenormals of the modes 1 and 2

make equal angles with the direction (z) of magnetization.

Since the film is homogeneous, the wavenormal direc-

tions inside the film are straight lines. In view of (15) the

wavenormal directions of the mode 1 successively and

totally internally reflected from the opposite surfaces of

the film are parallel even though the two reflecting inter-

faces are not parallel. A similar result holds good for the

mode 2 also. Since the rays are normal to the correspond-

ing wavenormals, the zig-zagging ray directions obtained

from successive reflections at the two interfaces are such
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Fig. 2. Zig-zag model for the wavenonnaf directions and ~e associated

zig-ragging ray directions for the normaf magnetization. O= n/2 – 0.

that all the rays directed towards or away from a particu-

lar interface are parallel. Thus, the directions of the zig-

zagging wavenormals and the rays inside a YIG film with

parallel interfaces remain unchanged when the two inter-

faces are slanted with respect to the midplane of the film

so as to obtain a linear taper in the thickness.

The ray of the magnetic wave on reflection at a plane

interface between the YIG and the free space undergoes,

in general, a lateral displacement [7]– [9] in the x-direction

as given by 2x, = 2&$/il~X and an associated time delay

[4] as given by 2t, = – 2tl@/Eko. In general, the phase term

@is a function of the independent variables u and&. As

pointed out previously [6], since @ is independent of ~X,

the ray of the magnetic wave does not undergo a Goos–

Hanchen lateral displacement. However, there is a non-

vanishing group delay on reflection at a plane interface

between the YIG and the free space.

The dispersion relation of the magnetic wave guided

along the YIG film can be deduced using the zig-zag

model for the propagation of the phase fronts of a homo-

geneous plane wave inside the film [3]. The zig-zagging

wavenormal directions of the successively reflected homo-

geneous plane wave inside the film are shown by the solid

line P, PzP3Pa in Fig. 2. The angle made by the wavenor-

mals of the modes 1 and 2 with the direction (z) of

magnetization is denoted by O. The dashed line PI P4

represents a phase front, namely, that is perpendicular to

the wavenormal of the mode 2. We assume that the

thickness of the film varies sufficiently slowly in the

x-direction that in the distance between PI and P4, the
film thickness is essentially a constant. Therefore, in ob-

taining the closure condition on the phase between PI and

PA, we can assume the two interfaces of the film to be

locally parallel. Since the closure condition is a local

relation, it can be deduced for a tapered film essentially in

the same manner as for a planar film with parallel inter-

faces [6]. The result is

4(–pl)’/2d(x)& +4@=2r(n+ 1), n=l,2,3,. ... etc.

(16)

where the right-hand side is chosen such that n = 1 corre-

sponds to the smallest possible positive value for &. The
closure condition (16) is the dispersion relation of the

guided magnetic wave. The group velocity VgX of the

guided magnetic wave can be determined from (16) as

Vgx S(–pl)1’2d(X)[( –P1)l/2d(X)/Ogx –ao/au]-l

(17)

where ogX is the x-component of the group velocity in the

unbounded YIG.

The distance between PI and P4 is approximately equal
– l/z The fractional change in theto 4dtanfl=4d(-pl) .

thickness of the YIG film from PI to Pq is obtained as

4( – pl ) - ‘/2tan a. This fractional change in the film thick-

ness has to be very small compared to unity in order for

us to be able to treat the closure condition as a local

relation. Consequently, (16) and (17) are valid except near

PI= O, that is except for frequencies very close to the

resonant frequency u= [o~(o~ + u~)] 1/2.
Since Ug-f?= O, the rays inside the film are perpendicular

to the corresponding wavenormal directions. Therefore,

there are zig-zagging ray directions inside the film associ-

ated with the zig-zagging wavenormal directions. It has

been pointed out previously that, on reflection at an

interface between the YIG and the free space, a ray does

not undergo a lateral shift. In Fig. 2 R, R zR3R4 is a part
of the zig-zagging ray directions. These ray directions

correspond to P, PzP3P4 which is a part of the zig-zagging

wavenormal directions. The angle made by the ray direc-

tions associated with the modes 1 and 2 with the direction

(z) of magnetization is denoted by ~ where ~= 7r/2 – 8.

R1R4 is on the rnidplane z= O of the YIG film. We

assume that the thickness of the film varies sufficiently

slowly in the x-direction that in the distance between R 1
and R4, the film thickness is essentially a constant. There-

fore, in obtaining the group velocity by the ray method,

we can assume that the two interfaces of the film are

locally parallel. Since the ray method involves only local

relations, the group velocity for a tapered film by the ray

method can be deduced with the help of a procedure

similar to that employed for a planar film with parallel

interfaces. The result is the same as that given by (17).

Hence, there is internal consistency since the ray method

gives the same result for the group velocity of the guided

magnetic wave on a tapered film as that obtained by the

wave method and the dispersion relation.

The distance between R, and R4 is equal to 4dtan ~=

4d( – p1)1f2. The fractional change in the thickness of the

YIG film from R, to R4 is obtained as 4( – p ~)1/2 tan a.

This fractional change in the film thickness has to be very

small compared to unity in order to validate the local

relations used in the ray method of obtaining the group

velocity. Consequently, for a weakly tapered film, the ray

method of determining the group velocity is valid except

for frequencies very close to the cutoff frequency a = a~

where p ~ tends to infinity. It should be noted that near the

cutoff frequency even the validity of the magnetic wave

approximation used in the present analysis breaks down.

Thus, the quasi-optic method of deducing the dispersion

relation and the group velocity of the magnetic wave

guided by a weakly tapered YIG film is valid except in the

neighborhood of the cutoff and resonant frequencies. We

shall now proceed to give a brief treatment for the magne-

tization parallel to the propagation direction of the guided

magnetic wave and nearly parallel to the surfaces of the

film.
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Fig. 3. Geometry of the tapered YIG film in sir for the parallel
magnetization. d(z) = d– z tan a.

III. PARALLEL MAGNETIZATION

It is convenient to keep the magnetization in the z-

direction. For the nearly planar slab of YIG situated in

free space, the weak linear taper in the thickness now

occurs in the z-direction. We now choose a Cartesian

coordinate system such that the plane x= O coincides with

the midplane of the fihn as shown in Fig. 3. The geometry

of the film has no variation in the y-direction. The YIG

film now occupies the region – d(z) <x < d(z) and – co

<y, z< m where d(z) =d–ztana. The film is uniformly

magnetized in the z-direction which is nearly parallel to

the surfaces of the fihn. As before, all the field quantities

are assumed to be independent of y. For the magnetic

waves, the governing equations (l)– (3) and the plane

wave characteristics as given in Section II are unaltered.

A plane magnetic wave is incident on the upper inter-

face x= d(z) between the YIG. and the free space from

the side of the YIG as shown in Fig. 3. There is a reflected

magnetic wave in the YIG and a transmitted magnetic

field in the free space. To analyze this reflection phenom-

enon, we use a rotated coordinate system (u, y, w) as

defined by

~=(X—d)COsa+zsina (18a)

w= —(x —d)sina+zcosa (18b)

where the w-axis is parallel to the upper surface of the

film. In the new coordinate system, (1) becomes

[
(Jhcos’a+sin’ a’

a’
a)=+2(l —pl)sinacosa R

au

+(p1sin2a+cos2a) 1-$+(U,W)=O. (19)

We take the magnetic scalar potential in the YIG to be of

the form

+(u, w)= [A, exp(@V,u)+A2exp (i~U2u)] exp(@Ww)

(20)

where BWis assumed to be positive, and&l and&2 can be

expressed in terms of flW with the help of (19) as follows:

~,_ [-(-Pl)1’2-(1-pl) COsasina]
u

[Ibcos’a+sin’a] ‘w

~’ [(-h)’” 1–(l–pl)cosasina ~
=

u
[lJ~cos2a+sin2a] ‘“

. (21a)

(21b)

99

Using (19) with pl = 1, we express the transmitted mag-

netic scalar potential in the free space as

+(u, w)= A3exp(–~Wu)exp( i&w). (22)

The tangential magnetic field HW(U, w) and the normal

magnetic flux density BU( u, w ) can be determined from

(2), (3), and (18). Applying the boundary conditions that

HW(U, w) and BU(U, w) are continuous at the interface u = O

yields

R= A2/A1=exp(–i2@) (23)

‘where @ is the same as that given in (11). The phase

reflection coefficient A2 /A1 has the same important fea-

tures as those for the normal magnetization.

The plane waves having the wavenumbers &l and @U2

in the u-direction are designated as modes 1 and 2, respec-

tively, in an unbounded YIG. In the u-direction, it can be

shown from (21) that the group velocity of the mode 1 is

positive and that of the mode 2 is negative, i.e.,

Vgul >0 I&z <o. (24)

Hence, the modes 1 and 2 represent the incident and

reflected rays, respectively. Consequently, the phase re-

flection coefficient A2 /A1 and the ray reflection coeffi-

cient R_are the same as indicated in (23).

Let #1 be the angle made by the wavenormal of the

mode 1 with the u-axis and ~2 be the angle made by the

negative of the wavenormal of the mode 2 with the u-axis,

as shown in Fig. 3. Also, 6J1and 92 be the angles with

respect to the x-axis corresponding to ~1 and i32, respec-

tively, as also indicated in Fig. 3. Hence,

tanJl = P. /pul (25a)

tan~z = –&/&2 (25b)

e,=~, +a (26a)

e2=t72-a. (26b)

Using (21), (25), and (26) we obtain the important result

that

e, =02 =tan-’ [(-pJ’/2]. (27)

The wavenormal of the mode 1 and the negative of the

wavenormal of the mode 2 make equal angles with the

x-direction, which is perpendicular to the magnetization

direction.

The reflection of magnetic waves at the lower interface

x = – d(z) separating the YIG (x> – d(z )) from the free

space (x< – d( z )) can also be investigated in a similar

manner for the wave incident from the side of the YIG.

For both the interfaces, we obtain the same value for the

phase as well as the ray reflection coefficients. At the

lower interface also, the wavenormal directions of the

modes 1 and 2 make equal angles with the x-direction,

which is normal to the magnetization direction.

As with the normal magnetization, for the parallel mag-
netization also, the wavenormal directions of the mode 1

as well as those of the mode 2 successively and totally

internally reflected from the opposite surfaces of the film
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Fig. 4. Zig-zag model for the wavenormal directions and ~e associated
zig-zagging ray directions for the parallel magnetization. O= 7r/2 – 6.

are parallel even though the two reflecting interfaces are

not parallel. Similar results are obtained for the zig-zagging

ray directions associated with. the modes 1 and 2. It

follows therefore that even for the parallel magnetization,

the directions of the zig-zagging wavenormals and the rays

inside a YIG film with parallel interfaces remain un-

changed when the two interfaces are slanted with respect

to the midplane of the film so as to obtain a linear taper

in the thickness. Also, for the parallel magnetization, the

ray reflection coefficient is the same as that for the normal

magnetization; hence, the ray on reflection at a plane

interface between the YIG and the free space, undergoes

no lateral displacement but has a time delay identical to

that given for the normal magnetization, that is 2t$ =

–2a~/au.

The zig-zagging wavenormal directions of the succes-

sively reflected homogeneous plane wave inside the film

are shown by the solid line Pl Pz P3Pb in Fig. 4. The angle

made by the wavenormals of the modes 1 and 2 with the

x-direction is denoted by 0. The dashed line Pl P4 repre-

sents a phase front, namely, that is perpendicular to the

wavenormal of the mode 1. The film thickness is assumed

to vary sufficiently slowly in the z-direction that in the

distance between PI and P4, the film thickness is essen-

tially a constant. Therefore, for determining the closure

condition on the phase between PI and Pd, the two inter-

faces may be considered to be locally parallel. Hence, the

closure condition for a tapered film can be deduced

essentially in the same manner as for a planar film with

parallel interfaces [6]. The result is

4(–P, ) ‘1/2d(Z)~z –4@=2m(n–2),

n=l,2,3, -.. ,etc. (28)

where the right-hand side is chosen such that n = 1 corre-

sponds to the smallest possible positive value for ~=. The

closure condition (28) is the dispersion relation of the
guided magnetic wave. The group velocity Vgz of the

guided magnetic wave can be derived from (28) as

–Vgz=(–pl) -l’%(z) [(-pi) -’/2d(z)/

(-ogz)-a~/a@] ‘* (29)

where Vgz is the z-component of the group velocity in the

unbounded YIG.

The distance between PI and P4 is approximately equal

to 4dtan O= 4d( – pl )112. The fractional change in the

thickness of the YIG film from PI to P4 is obtained as

4( – U. )1/2 tan a. This fractional charwe has to be verv

small compared to unity to justify the treatment of the

closure condition as a local relation. Therefore, (28) and

(29) are valid except when p, becomes very large, that is,

except for frequencies very close to the resonant frequency

(.J= OH.

The rays are perpendicular to the corresponding wave-

normals and do not undergo lateral shifts on reflection,

There are zig-zagging rays associated with the zig-zagging

wavenormals. In Fig. 4 RI R2 R3 R4 is a part of the zig-

zagging ray directions. These ray directions correspond to

PI P2P3Pd which is a part of the zig-zagging wavenormal

directions. The angle made by the ray directions associ-

ated with the modes 1 and 2 with the x-direction is

denoted by ~ where ~= T/2 – 9. RI Rd is on the midplane

x = O of the YIG film. We assume that the slow variation
of the film thickness in the z-direction is such that in the

distance between RI and Rb, the film thickness is essen-

tially a constant. Therefore, for deducing the group veloc-

ity by the ray method, the two interfaces of the film may

be approximated to be locally parallel. Hence, the group

velocity for a tapered film by the ray method can be

derived with the help of a procedure similar to that

employed for a planar fihn with parallel interfaces. The

result is the same as that given by (29). As with the

normal magnetization, for the parallel magnetization also,

there is internal consistency since the ray method gives the

same result for the group velocity of the guided magnetic

wave on a tapered film as that determined by the wave

method and the dispersion relation,

The distance between Rl and Rd is equal to 4dtan ~=
– 112 The fractional change in the thickness of4d(–/q) .

the film from R, to Rq is 4d( –PI ) - ‘/2 tan a. This frac~

tional change has to be very small compared to unity in

order to validate the ray method of determining the group

velocity. Hence, for a weakly tapered film, the ray method

of finding the group velocity is valid except for frequen-

cies very close to the cutoff frequency a = [ ti~( ti* +

‘M)] 1/2 where p ~= O. Near the cutoff frequency, the mag-

netic wave approximation used in the present analysis also

breaks down. Thus, as with the normal magnetization, for

the parallel magnetization also, the quasi-optic method of

deducing the dispersion relation and the group velocity of

the magnetic wave guided by a weakly tapered YIG film

is valid except in the neighborhood of the cutoff and

resonant frequencies.

IV, CONCLUDING REMARKS

There are two magnetic wave modes in an unbounded

YIG with a uniform magnetization. The wavenormals of

these two modes make equal angles with either the direc-

tion of magnetization or the direction which is perpendic-

ular to the magnetization direction. In addition to the

saturation magnetization and the applied magnetic flux,

the angle of inclination depends only on the wave

frequency. In a bounded YIG such as in a thin film,

where the homogeneous plane wave modes are multiply

and totally internally reflected from the two interfaces of

the film. there are an infinite number of smided rntd.es
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having different wavenumbers. For all these guided modes,

the aforementioned inclination angle remains the same.

This feature of the wavenormals of the homogeneous

plane wave modes is unaffected by the geometry of the

film. In particular, the angle of inclination is the same for

a fihn with parallel interfaces having a constant separa-

tion distance between them and for a film with nonparal-

lel interfaces having a separation distance which varies in

the propagation direction. The rays are perpendicular to

the corresponding wavenormals. The rays associated with

the plane wave modes also make equal angles with either

the direction of magnetization or the direction which is

perpendicular to the magnetization direction. As in the

case of the wavenormals, for the rays also, the angle of

inclination depends only on the wave frequency and does

not depend on the order of the guided mode or the

geometry of the film.

Inside a fihn there are zig-zagging wavenormal direc-

tions caused by the successive and total internal reflection

of the plane wave modes at the two interfaces. The

wavenormals of each of the two plane wave modes are

always parallel. This parallelism is obtained even if the

two interfaces are slanted significantly. For the applica-

tion of the closure condition on the phase, we require the

fractional change in the thickness of the fihn in one unit

of the zig-zagging wavenormal directions to be very small

compared to unity. Such a small fractional change in the

thickness is possible only for weakly slanted interfaces

and that too for frequencies not close to the guided wave

resonant frequency. The application of the closure condi-

tion yields the dispersion relation of the guided-wave

modes. Similarly, associated with the zig-zagging wavenor-

mals, there are zig-zagging rays. The rays of each of the

two plane wave modes are always parallel. Although this

parallelism is obtained even if the two interfaces are

slanted significantly, in order to justif y the local relations

used in the derivation of the group velocity by the ray

method, we require the fractional change in the thickness

of the film in one unit of the zig-zagging ray directions to

be very small compared to unity. This small fractional

change in the film thickness can be obtained only if the

two interfaces are slanted slightly and that too for fre-

quencies not close to the guided-wave cutoff frequency.

The ray method of determining the group velocity yields a

result identical to that obtained from the dispersion rela-

tion.

In this paper we have given the details for the various

results for the magnetization direction 1) normal to the

midplane of the film, and 2) parallel to the propagation

direction of the guided magnetic wave and the midplane

of the film. However, one of us has obtained similar

results for a more general case in which the magnetization

direction lies in a plane normal to the midplane of the
film but containing the propagation direction.

For a slightly tapered film, intuitive considerations lead

us to replace the actual thickness in the dispersion relation

and the group velocity of the magnetic wave guided by a

planar film with parallel interfaces by the local value of

the thickness for a slightly tapered film with nonparallel

interfaces. Our’ quasi-optic treatment of the magnetic

waves guided by a weakly tapered YIG film has con-

firmed the intuitive results and has also clarified the

frequency ranges of validity of the intuitive results. In

addition, our treatment has revealed the interesting fea-

tures of the wavenormal and the ray directions inside a

YIG film with a uniform magnetization.

Our treatment is valid for any kind of taper of the film

so long as the taper is sufficiently weak. When an uniform

external magnetic flux is applied, the applied magnetic

flux inside the YIG film is not necessarily uniform. There-

fore, it is necessary to assess also the effect of the weak

inhomogeneity in the applied magnetic flux inside the

YIG film. Since the ray directions of the two plane wave

modes depend on the direction of the applied magnetic

flux inside the film, it is considerably more difficult to

include the effect of the weak inhomogeneity in the ap-

plied magnetic flux inside the film.

For a planar film of length L, thickness 2d, and parallel

(P) interfaces, let the group delay time of the guided
magnetic wave be denoted by ~. Similarly, let ~ be the

corresponding group delay time for a linearly tapered (t)

film of the same length L, the same average thickness 2d

and nonparallel interfaces. From the results obtained in

this investigation, we find that ~/~= 1+ L2tan2 a/ 12d2

where a is the small tapering angle. Thus, a weak linear

taper in the film thickness tends to increase the group

delay time and this increment factor is the same for all the

frequencies and for all orders of the guided modes.
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